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ABSTRACT 

In this paper, we propose an efficient scheme to automatically 
convert existing 2D videos to 3D ones. The proposed method 
extracts motion information from two consecutive frames to 
estimate depth map for each of them. In the method, we first 
develop a region-based Graph cut method to fast and accurately 
perform motion segmentation, which is robust to large inter-
frame motions. Then, a depth assigning step for the segments is 
conducted to obtain a smooth depth map for each frame. Expe-
rimental results on standard testing sequences demonstrate that 
our scheme achieves accurate motion segmentation and accor-
dingly smooth depth map. 

Index Terms — Over segmentation, EMD, Graph cut, Mo-
tion segmentation, 2D-to-3D 

1. INTRODUCTION 

With the development of relative techniques and pressing re-
quirements of many practical applications, three dimensional 
(3D) visualization is becoming more and more attractive. Re-
cently, 3D cameras such as stereo cameras and depth cameras 
have been invented, which aim at capturing 3D scene directly. 
However, they are either rather complicated to operate, or very 
expensive. Some economic and efficient methods were proposed 
to convert existing 2D videos in the last decade. Generally 
speaking, conversion algorithms can be divided into two catego-
ries, semi-automatic 2D-to-3D conversion and automatic 2D-to-
3D conversion. As the former one needs human intersection, it 
can’t be widely adopted in many scenarios. As a result, automat-
ic video conversion methods have drawn more and more atten-
tion. 

Recently, some methods [1][2][3][4] have been proposed to 
automatically convert 2D videos to 3D ones by generating depth 
maps associated with the original video clips. In [1], segmenta-
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process and an additional initialization step was required. Chang 
et al [3] explored motion using frame difference method, and 
used K-Means algorithm to implement color segmentation. Ge-
nerating depth map required both time and spatial information. 
Nevertheless, this frame difference method needed a large num-
ber of neighboring frames to achieve good performance, and K-
Means algorithm required manual operation to define initial 
seeds. Kunter et al [4] adopted structure-from-motion method to 
estimate camera parameters and then background image was 
estimated to get the background model. Finally, independent 
moving objects were segmented by detecting the changed infor-
mation and each object was assigned a constant depth value. 
This algorithm can handle even complex and challenge scene 
with moving camera and independent moving objects, but more 
than two frames are needed to construct the background model. 

Since segmentation is very important in automatic 2D-to-
3D conversion, we turn to survey some related researches for 
segmentation algorithms. Among these algorithms, there are 
some dealing with scenes containing large motion using only 
two consecutive frames. For instance, Wills et al [5] proposed a 
novel framework for motion segmentation which used the de-
tected features to estimate motion layers with the same homo-
graphic motion and all pixels were grouped to each layer via 
graph cut algorithm [6]. However, the segmentation results were 
not accurate enough to obtain a smooth depth map. In addition, 
time complexity was rather high due to time-consumed feature 
detection and pixel-level Graph cut. 

In order to overcome the disadvantages of above methods 
which can’t handle large inter-frame motion using only two con-
secutive frames, we propose a novel automatic 2D-to-3D video 
conversion scheme. Firstly, sparse features of two consecutive 
frames are detected and matched. Secondly, homographic mo-
tion layers are estimated based on matched features. Moreover, 
graph cut is utilized to label areas which are obtained by over 
segmentation. Finally, depth is assigned to each semantic seg-
ment. 

2. MOTION SEGMENTATION AND DEPTH 
ASSIGNMENT 

In this part, we propose a novel method to achieve good segmen-
tation using both color and motion information inspired by 
Wills’ work [5]. With the segmentation results whose boundaries 
are accurate enough, depth is assigned to segments to generate 
smooth depth maps. The proposed method contains the follow-
ing steps: 1. Sparse feature detection, matching and planar ho-
mograph estimation. 2. Over-segmentation using improved 
Mean shift algorithm [7]. 3. Labeling segments using modified 
Graph cut algorithm in MRF framework. 4. Depth assignment.  



 
Figure 1. Flow chart of the proposed method 

The main contribution of our work lies in steps 2 and 3 which 
are detailed in section 2.2 and 2.3. The Flow chart of the pro-
posed method is illustrated in Figure 1. 

2.1 Feature matching and Homograph estimation 

Based on our previous work [8], step 1 and 2 can be performed 
as follows. We adopt Scale-invariant feature transform (SIFT) [9] 
to extract sparse features, which applies a difference of Gaussian 
function to identify feature points and calculates a descriptor for 
each feature point by using image gradients around a radius of 
the feature. SIFT has two appealing advantages. First, SIFT can 
locate the feature points with sub-pixel accuracy. Secondly, the 
SIFT descriptors are robust and distinctive, even if the feature 
points are under rotation, blurring, scale change, or illumination 
change. In addition, estimating homograph matrix of each mo-
tion layer only needs 4 or 6 feature points. That is to say, sparse 
feature points are enough. It can be done by SIFT which extracts 
sparse feature points in a rather short time. But Harris corners 
and Förstner features take a lot of time to extract dense feature 
points which are not indeed needed. 

When feature points are detected, we developed a bidirec-
tional feature matching method based on Lowe’s feature match-
ing method to establish sparse correspondences between two 
adjacent frames. Using these correspondences, we estimate the 
number of motion layers and homograph matrix of each layer 
using the method described in [8]. 

2.2 Over segmentation 

After these procedures, the homographies of motion layers have 
been determined. The next step is to assign all pixels to proper 
motion layers, which becomes a labeling problem. It can be 
solved using Graph cut. However, if we do the energy minimiza-
tion for each pixel, it only uses local information and may be 
sensitive to noise. In addition, it costs plenty of time. So we 
choose to segment the image into semantic regions because re-
gions can supply global information and region-level Graph cut 
can save much more time. The over segmentation results are 
shown in Figure 2.  

Our over segmentation procedure is achieved by Mean shift 
algorithm. And segmented regions should have the following 
properties: 1. They must contain at least 50 pixels, or the region 
is fused into other regions. 2. They have better not cross the 
object boundaries. 

2.3 Region-based Graph cut 

After over segmentation was done, we want to classify them into 
the estimated motion layers via Graph cut. In the previous work 
[5], the problem of assigning each pixel to proper motion layer  

       
(a)                                            (b) 

Figure 2.  (a) Over segmentation result of a frame extracted from Ak-
ko&Kayo sequence  (published by Tanimoto Laboratory, Nagoya Uni-
versity) (b) Over segmentation result of a frame extracted from 
Alt_moabit sequence [14]. 

can be formulated as determining a function l that maps each 
pixel to an unique motion label from label set L={1,…,m}, 
where 1,…,m present motion layers. The establishment of the 
function l for a certain frame t can be achieved by minimizing 
the following energy function: 
               1 1( , , ) ( , , ) ( , )t t t t t

data smoothE l I I E l I I E l Iλ+ += +             (1) 

where tI  is intensity of frame t. The energy function has two 
terms with a penalized factor λ  between them. In our method, 
pixels are substituted by regions, so we have to modify the data 
term and smooth term in order that the energy function can be 
solved by modified region-base graph cut. In [5], the assump-
tion that the appearance of the object remains the same across 
the images is adopted. However, this assumption is not valid for 
occluded pixels because they only appear in one of the two 
frames. To handle this problem, in [8], we have added an occlu-
sion label to the data term. It is same for regions in our method. 
The data term which addresses the reconstruction error can be 
represents as the following formulation: 

{ }1 2
1 [ ( ) ( ( ( ), ))]     if  1,...,

( , , )
    if  1 

t t
t t

data
i

I i I M l i i l m
E l I I

d l m

+
+ − ∈

=
= +

(2) 

where ( )tI i  denotes mean intensity of region i  in frame t and 
( ( ), )M l i i  returns new label of region i  in the adjacent frame 

under the influence of motion ( )l i . d  is a constant parameter 
modeling the reconstruction error for occluded regions. If ( )l i  is 
ranged in {1, , }m , we see that the difference in intensity is 
used to model the reconstruction error. However, if it equals to 

1m + , a constant parameter d  is utilized. For one region, if the 
reconstruction error, caused by assigning it to any real motion 
layer, is greater than the constant d , the region is likely to be 
assigned with the occlusion label. So if d  is set to a too large 
value, some occluded regions may be wrongly assigned with 
motion label. Meanwhile, if d  is set to a small value, visible 
regions may be assigned to the occlusion layer. As to smooth 
term, we first decide the relation of regions by judging the con-
nection of neighboring 8 pixels. If two neighboring pixels belong 
to different regions, the two regions are treated as two neighbor-
ing ones. If two regions do not contain this kind of pixel pairs, 
we think the two regions are not connected with each other. Fol-
lowing [5], smooth term is as follows: 
                    ( ) ( )
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here, ( )t
ijs I  is the similarity between two regions i and j in 

frame t. δ  equals to 1 when its arguments are equal, otherwise, 
it equals to 0. ( )N i  represents the neighborhood of region i, 
which contains all regions which are connected with region i. To 
define the similarity between regions, the idea of bilateral filter 
[10] is utilized. In bilateral filter, the weight in the filtering com-
bines the geometry closeness and the photometric similarity 
between two regions. To involve this property in our measure-



ment of similarity, we utilize the weight in bilateral filter as the 
similarity of two regions. The similarity is defined as follows: 
                               ( ) ( ) ( )t X t C t

ij ij ijs I I I= Φ Φ                            (4) 

The first term ( )X t
ij IΦ  is the closeness function and the second 

term ( )C t
ij IΦ  is the photometric similarity function. In simple 

and important case, these two functions are Gaussian functions 
of the Euclidean distance between their arguments. More specif-
ically, ( )X t

ij IΦ  has the following formulation: 
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where ( ),D i j  is the Euclidean distance between the centers of 

regions i and j and Xσ  is the bandwidth.  The formulation of 

( )C t
ij IΦ  is perfectly analogous: 
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where ( , )EMDD i j  is Earth Movers’ Distance (EMD) [11] be-

tween regions i and j. Cσ  is the bandwidth. We choose EMD as 
the photometric similarity metric instead of difference of two 
regions’ mean intensities for the following reason. EMD is sta-
tistical distance between two regions. As areas of two regions 
are generally not equal, EMD is more accurate than distance 
obtained by mean intensity difference of two neighboring re-
gions. For instance, assuming that gray values of all pixels in 
one region are 255/2, while in another neighboring region, gray 
values of all pixels in it are either 0 or 255. And the sums of the 
two kinds of pixels are equal. The mean intensity difference of 
the two regions is 0. However, the two regions indeed are totally 
different in aspect of gray level. So mean intensity difference is 
invalid or may even lead to bad results in these situations. In our 
method, we formulate EMD as follows. Firstly, we gather statis-
tics of the gray values of all pixels in one region by dividing the 
range [0,255] into N average sub-ranges and then storing how 
many pixels ( , 1, ,iN i N= ) fall into each sub-range. Accor-
dingly, the probability of pixels falling into each sub-range is 

expressed as , 1, ,iN i N
N

= . Until now, two histograms for two 

neighboring regions are established. Finally, EMD distance can 
be solved as a transportation problem. In equation (3), ( )t

ijs I  

is utilized to penalize the discontinuity assignment of motion. As 
motion segmentation results should be piecewise constant, this 
definition is reasonable. 

From the formulation of energy function (1), we see that da-
ta term leads the assignment result to be consistent with the mo-
tion and occlusion in the scene, and smooth term guarantees the 
piecewise constant property. 

The above energy function can be minimized as a metric 
labeling problem. Kleinberg and Tardos [12] show that this kind 
of problems equals to find the maximum a posteriori labeling of 
a class of Markov random field. We adopt Boykov’s method to 
solve the problem which is a polynomial time algorithm. As 
proposed by Wills [5], we also do the intersection step so that 
occluded pixels are further removed. 

2.4 Depth assignment 

In this subsection, we assign depth to segments obtained above. 
Guttmann et al [13] demonstrated that depth order is the most 
important clue for 3D vision rather than the exact depth values. 
And like what we have proposed in [1] for depth assignment, we 
also obey the three Rules to assign depth for each segment. The 
rules are as follows: 
Rule 1. We suppose the pixels at the boundaries of the image 
belong to the background of the scene while the segments in the 
center stand for the foreground objects. 
Rule 2. One segment is assumed to have unique depth value. 
Rule 3. Some background object like a wall or a building always 
has a consistent depth value and this value always implies the 
farthest distance in the scene. 

3. EXPERIMENTAL RESULTS 

The proposed method is tested on two video sequences and seg-
mentation results are compared with Wills’ method in aspects of 
both segmentation quality and time complexity. All experiments 
are performed via Matlab and C++ hybrid programming on the 
computer with the following configuration: Intel(R) Core(TM)2 
Duo CPU E7500 2.93Hz 4.00GB Memory. Figure 3, Figure 4 
and Figure 5 show segmentation results obtained by our method 

 

 

 
Figure 3. The first row is the original first frame extracted from Ak-
ko&Kayo sequence. The second is obtained by proposed method. The 
third row is obtained by Wills’ method [5]. 

 

 

 
Figure 4. The first row is the original second frame extracted from Ak-
ko&Kayo sequence. The second is obtained by proposed method. The 
third row is obtained by Wills’ method [5]. 


